Unity_Web/Assets/Best HTTP/Source/SecureProtocol/crypto/macs/CMac.cs

322 lines
9.2 KiB
C#

#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
#pragma warning disable
using System;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Modes;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Paddings;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Macs
{
/**
* CMAC - as specified at www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html
* <p>
* CMAC is analogous to OMAC1 - see also en.wikipedia.org/wiki/CMAC
* </p><p>
* CMAC is a NIST recomendation - see
* csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38B.pdf
* </p><p>
* CMAC/OMAC1 is a blockcipher-based message authentication code designed and
* analyzed by Tetsu Iwata and Kaoru Kurosawa.
* </p><p>
* CMAC/OMAC1 is a simple variant of the CBC MAC (Cipher Block Chaining Message
* Authentication Code). OMAC stands for One-Key CBC MAC.
* </p><p>
* It supports 128- or 64-bits block ciphers, with any key size, and returns
* a MAC with dimension less or equal to the block size of the underlying
* cipher.
* </p>
*/
public class CMac
: IMac
{
private const byte CONSTANT_128 = (byte)0x87;
private const byte CONSTANT_64 = (byte)0x1b;
private byte[] ZEROES;
private byte[] mac;
private byte[] buf;
private int bufOff;
private IBlockCipherMode m_cipherMode;
private int macSize;
private byte[] L, Lu, Lu2;
/**
* create a standard MAC based on a CBC block cipher (64 or 128 bit block).
* This will produce an authentication code the length of the block size
* of the cipher.
*
* @param cipher the cipher to be used as the basis of the MAC generation.
*/
public CMac(
IBlockCipher cipher)
: this(cipher, cipher.GetBlockSize() * 8)
{
}
/**
* create a standard MAC based on a block cipher with the size of the
* MAC been given in bits.
* <p/>
* Note: the size of the MAC must be at least 24 bits (FIPS Publication 81),
* or 16 bits if being used as a data authenticator (FIPS Publication 113),
* and in general should be less than the size of the block cipher as it reduces
* the chance of an exhaustive attack (see Handbook of Applied Cryptography).
*
* @param cipher the cipher to be used as the basis of the MAC generation.
* @param macSizeInBits the size of the MAC in bits, must be a multiple of 8 and @lt;= 128.
*/
public CMac(
IBlockCipher cipher,
int macSizeInBits)
{
if ((macSizeInBits % 8) != 0)
throw new ArgumentException("MAC size must be multiple of 8");
if (macSizeInBits > (cipher.GetBlockSize() * 8))
{
throw new ArgumentException(
"MAC size must be less or equal to "
+ (cipher.GetBlockSize() * 8));
}
if (cipher.GetBlockSize() != 8 && cipher.GetBlockSize() != 16)
{
throw new ArgumentException(
"Block size must be either 64 or 128 bits");
}
m_cipherMode = new CbcBlockCipher(cipher);
this.macSize = macSizeInBits / 8;
mac = new byte[cipher.GetBlockSize()];
buf = new byte[cipher.GetBlockSize()];
ZEROES = new byte[cipher.GetBlockSize()];
bufOff = 0;
}
public string AlgorithmName
{
get { return m_cipherMode.AlgorithmName; }
}
private static int ShiftLeft(byte[] block, byte[] output)
{
int i = block.Length;
uint bit = 0;
while (--i >= 0)
{
uint b = block[i];
output[i] = (byte)((b << 1) | bit);
bit = (b >> 7) & 1;
}
return (int)bit;
}
private static byte[] DoubleLu(byte[] input)
{
byte[] ret = new byte[input.Length];
int carry = ShiftLeft(input, ret);
int xor = input.Length == 16 ? CONSTANT_128 : CONSTANT_64;
/*
* NOTE: This construction is an attempt at a constant-time implementation.
*/
ret[input.Length - 1] ^= (byte)(xor >> ((1 - carry) << 3));
return ret;
}
public void Init(ICipherParameters parameters)
{
if (parameters is KeyParameter)
{
m_cipherMode.Init(true, parameters);
//initializes the L, Lu, Lu2 numbers
L = new byte[ZEROES.Length];
m_cipherMode.ProcessBlock(ZEROES, 0, L, 0);
Lu = DoubleLu(L);
Lu2 = DoubleLu(Lu);
}
else if (parameters != null)
{
// CMAC mode does not permit IV to underlying CBC mode
throw new ArgumentException("CMac mode only permits key to be set.", "parameters");
}
Reset();
}
public int GetMacSize()
{
return macSize;
}
public void Update(byte input)
{
if (bufOff == buf.Length)
{
m_cipherMode.ProcessBlock(buf, 0, mac, 0);
bufOff = 0;
}
buf[bufOff++] = input;
}
public void BlockUpdate(byte[] inBytes, int inOff, int len)
{
if (len < 0)
throw new ArgumentException("Can't have a negative input length!");
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || _UNITY_2021_2_OR_NEWER_
BlockUpdate(inBytes.AsSpan(inOff, len));
#else
int blockSize = m_cipherMode.GetBlockSize();
int gapLen = blockSize - bufOff;
if (len > gapLen)
{
Array.Copy(inBytes, inOff, buf, bufOff, gapLen);
m_cipherMode.ProcessBlock(buf, 0, mac, 0);
bufOff = 0;
len -= gapLen;
inOff += gapLen;
while (len > blockSize)
{
m_cipherMode.ProcessBlock(inBytes, inOff, mac, 0);
len -= blockSize;
inOff += blockSize;
}
}
Array.Copy(inBytes, inOff, buf, bufOff, len);
bufOff += len;
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || _UNITY_2021_2_OR_NEWER_
public void BlockUpdate(ReadOnlySpan<byte> input)
{
int blockSize = m_cipherMode.GetBlockSize();
int gapLen = blockSize - bufOff;
if (input.Length > gapLen)
{
input[..gapLen].CopyTo(buf.AsSpan(bufOff));
m_cipherMode.ProcessBlock(buf, mac);
bufOff = 0;
input = input[gapLen..];
while (input.Length > blockSize)
{
m_cipherMode.ProcessBlock(input, mac);
input = input[blockSize..];
}
}
input.CopyTo(buf.AsSpan(bufOff));
bufOff += input.Length;
}
#endif
public int DoFinal(byte[] outBytes, int outOff)
{
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || _UNITY_2021_2_OR_NEWER_
return DoFinal(outBytes.AsSpan(outOff));
#else
int blockSize = m_cipherMode.GetBlockSize();
byte[] lu;
if (bufOff == blockSize)
{
lu = Lu;
}
else
{
new ISO7816d4Padding().AddPadding(buf, bufOff);
lu = Lu2;
}
for (int i = 0; i < mac.Length; i++)
{
buf[i] ^= lu[i];
}
m_cipherMode.ProcessBlock(buf, 0, mac, 0);
Array.Copy(mac, 0, outBytes, outOff, macSize);
Reset();
return macSize;
#endif
}
#if NETCOREAPP2_1_OR_GREATER || NETSTANDARD2_1_OR_GREATER || _UNITY_2021_2_OR_NEWER_
public int DoFinal(Span<byte> output)
{
int blockSize = m_cipherMode.GetBlockSize();
byte[] lu;
if (bufOff == blockSize)
{
lu = Lu;
}
else
{
new ISO7816d4Padding().AddPadding(buf, bufOff);
lu = Lu2;
}
for (int i = 0; i < mac.Length; i++)
{
buf[i] ^= lu[i];
}
m_cipherMode.ProcessBlock(buf, mac);
mac.AsSpan(0, macSize).CopyTo(output);
Reset();
return macSize;
}
#endif
/**
* Reset the mac generator.
*/
public void Reset()
{
/*
* clean the buffer.
*/
Array.Clear(buf, 0, buf.Length);
bufOff = 0;
/*
* Reset the underlying cipher.
*/
m_cipherMode.Reset();
}
}
}
#pragma warning restore
#endif